Cách học Toán và các lỗi cơ bản khi giải toán

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Đức Phúc (trang riêng)
Ngày gửi: 12h:50' 30-12-2009
Dung lượng: 49.0 KB
Số lượt tải: 1
Nguồn:
Người gửi: Nguyễn Đức Phúc (trang riêng)
Ngày gửi: 12h:50' 30-12-2009
Dung lượng: 49.0 KB
Số lượt tải: 1
Số lượt thích:
0 người
Cách học Toán và các lỗi cơ bản khi giải toán
A. Cách học toán
Ta phải học toán trước khi giải các bài toán. Sau đây là vài hình tượng so sánh các cách học toán. + Khi chúng ta ghi chép thật cẩn thận và học thuộc thật kỹ các định lý hoặc các lời giải của các bài tập, chúng ta đã làm việc tương tự với: bảo quản thật kỹ và đếm đi đếm lại tất cả những gì có trong một bọc, trong đó có tiền lẫn với giấy vụn, của một ông tỉ phú cho chúng ta. Thường thì trong bọc có nhiều giấy vụn hơn tiền. + Khi chúng ta ghi chép thật cẩn thận các ý toán và kỹ thuật toán cùng các bước chính của các chứng minh các định lý hoặc các lời giải của các bài tập, chúng ta đã làm việc tương tự với: lựa riêng tiền trong bọc nói trên, bảo quản thật kỹ và đếm đi đếm lại số tiền đó. + Khi chúng ta xem xét cách sử dụng các kết quả của các định lý và các bài tập cùng các ý toán và kỹ thuật toán trong phần chứng minh chúng, chúng ta đã làm công việc tương tự với: tìm cách sử dụng hiệu quả số tiền đó. + Khi chúng ta xem xét cách tiếp cận và cách tìm ra các chứng minh các định lý hoặc các lời giải của các bài tập, chúng ta đã làm việc tương tự với: học cách làm ra số tiền đó của ông tỉ phú. Cách học đầu tiên rất tệ hại, ngay cả những thiên tài bị buộc học theo kiểu này cũng trở nên ngu xuẩn. Tuy nhiên còn nhiều kỳ thi trên đại học chủ yếu khảo hạch trí nhớ của sinh viên hơn là trình độ suy luận của họ: việc này vô tình đẩy một số sinh viên vào cách học thứ nhất cùng với các tệ nạn quay cóp trong các phòng thi. Chúng tôi chưa hề thấy có một công việc của sinh viên tốt nghiệp nào mà người ta phải làm toán mà tuyệt đối không được tham khảo các tài liệu. Chúng tôi mong ước ngày nào đó sinh viên chúng ta được tham khảo mọi tài liệu trong phòng thi. Chúng tôi đã áp dụng cách thi này trên hai mươi năm nay (cho cả các sinh viên năm thứ nhất) và thấy thực sự đã thúc đẩy sinh viên học một cách có rèn luyện suy luận hơn. Thực ra, phải suy nghĩ nhiều hơn khi ra đề cho cách thi này, nhưng không phải là công việc quá khó. Các sinh viên học theo ba cách sau cùng tùy theo các mơ ước của mình. Phần hướng các dẫn bài tập trong sách này hỗ trợ các bạn học có suy luận hơn. Có điều thú vị là: khi các bạn học theo cách thứ hai, có những điều là “tiền” hôm nào thì hôm nay trở thành “giấy vụn” vì chúng trở nên quá quen thuộc với các bạn. Do đó học đúng cách chúng ta sẽ thấy chương trình học ngày càng nhẹ đi nhiều.
B. Các lỗi cơ bản khi giải toán Sau đây là các lỗi mà chúng ta cần tránh khi giải toán. + Mơ ước thấy ngay lời giải khi bắt đầu giải một bài toán. Nhiều học sinh và sinh viên mất tinh thần khi không thấy phương hướng rõ rệt nào để giải một bài toán. Bản chất của việc việc giải toán là từng bước một tiến gần hơn đến lời giải. Đừng mơ ước vô lý về có một giải pháp toàn cục ngay khi bắt đầu giải một bài toán. Có ngững sinh viên, khi được gọi lên bảng giải toán, cho chúng tôi biết họ chưa giải xong bài toán đó ở nhà. Chúng tôi yêu cầu họ viết ra những gì họ giải được về bài toán đó, sau đó chúng tôi yêu cầu họ đọc lại đề toán và những gì họ đã viết, rồi khuyến khích họ viết thêm một chút nữa. Cứ như vậy, và cả lớp bỗng thấy bài toán đã giải xong sau khi họ viết ra dòng sau cùng, giống như xem một màn ảo thuật. Thật ra đa số các bài toán trong chương trình học đều có thể giải như vậy mà không cần có một khái niệm toàn cục về lời giải khi bắt đầu giải chúng. Đây là tác phong làm toán cần được rèn luyện để chuẩn bị cho việc đương đầu với các bài toán phức tạp trong nghiên cứu khoa học về sau này. Vấn đề làm sao viết thêm một chút từ những gì có sẵn sẽ được trình bày trong các mục sau. + Lướt qua các bài toán cơ bản và dành nhiều thì giờ cho các bái toán đố. Nhiều sinh viên coi thường các bài toán cơ bản đơn giản mà không dành thì giờ ôn tập chúng, chỉ cố giải và học thuộc các bài toán khó. Thực ra đa số các bài toán phức tạp là các bài phối hợp nhiều bài toán cơ bản. Cho nên sẽ chúng ta thấy rõ bản chất của các bài toán loại này và dễ dàng giải chúng nếu chúng ta đã thành thạo các bài
A. Cách học toán
Ta phải học toán trước khi giải các bài toán. Sau đây là vài hình tượng so sánh các cách học toán. + Khi chúng ta ghi chép thật cẩn thận và học thuộc thật kỹ các định lý hoặc các lời giải của các bài tập, chúng ta đã làm việc tương tự với: bảo quản thật kỹ và đếm đi đếm lại tất cả những gì có trong một bọc, trong đó có tiền lẫn với giấy vụn, của một ông tỉ phú cho chúng ta. Thường thì trong bọc có nhiều giấy vụn hơn tiền. + Khi chúng ta ghi chép thật cẩn thận các ý toán và kỹ thuật toán cùng các bước chính của các chứng minh các định lý hoặc các lời giải của các bài tập, chúng ta đã làm việc tương tự với: lựa riêng tiền trong bọc nói trên, bảo quản thật kỹ và đếm đi đếm lại số tiền đó. + Khi chúng ta xem xét cách sử dụng các kết quả của các định lý và các bài tập cùng các ý toán và kỹ thuật toán trong phần chứng minh chúng, chúng ta đã làm công việc tương tự với: tìm cách sử dụng hiệu quả số tiền đó. + Khi chúng ta xem xét cách tiếp cận và cách tìm ra các chứng minh các định lý hoặc các lời giải của các bài tập, chúng ta đã làm việc tương tự với: học cách làm ra số tiền đó của ông tỉ phú. Cách học đầu tiên rất tệ hại, ngay cả những thiên tài bị buộc học theo kiểu này cũng trở nên ngu xuẩn. Tuy nhiên còn nhiều kỳ thi trên đại học chủ yếu khảo hạch trí nhớ của sinh viên hơn là trình độ suy luận của họ: việc này vô tình đẩy một số sinh viên vào cách học thứ nhất cùng với các tệ nạn quay cóp trong các phòng thi. Chúng tôi chưa hề thấy có một công việc của sinh viên tốt nghiệp nào mà người ta phải làm toán mà tuyệt đối không được tham khảo các tài liệu. Chúng tôi mong ước ngày nào đó sinh viên chúng ta được tham khảo mọi tài liệu trong phòng thi. Chúng tôi đã áp dụng cách thi này trên hai mươi năm nay (cho cả các sinh viên năm thứ nhất) và thấy thực sự đã thúc đẩy sinh viên học một cách có rèn luyện suy luận hơn. Thực ra, phải suy nghĩ nhiều hơn khi ra đề cho cách thi này, nhưng không phải là công việc quá khó. Các sinh viên học theo ba cách sau cùng tùy theo các mơ ước của mình. Phần hướng các dẫn bài tập trong sách này hỗ trợ các bạn học có suy luận hơn. Có điều thú vị là: khi các bạn học theo cách thứ hai, có những điều là “tiền” hôm nào thì hôm nay trở thành “giấy vụn” vì chúng trở nên quá quen thuộc với các bạn. Do đó học đúng cách chúng ta sẽ thấy chương trình học ngày càng nhẹ đi nhiều.
B. Các lỗi cơ bản khi giải toán Sau đây là các lỗi mà chúng ta cần tránh khi giải toán. + Mơ ước thấy ngay lời giải khi bắt đầu giải một bài toán. Nhiều học sinh và sinh viên mất tinh thần khi không thấy phương hướng rõ rệt nào để giải một bài toán. Bản chất của việc việc giải toán là từng bước một tiến gần hơn đến lời giải. Đừng mơ ước vô lý về có một giải pháp toàn cục ngay khi bắt đầu giải một bài toán. Có ngững sinh viên, khi được gọi lên bảng giải toán, cho chúng tôi biết họ chưa giải xong bài toán đó ở nhà. Chúng tôi yêu cầu họ viết ra những gì họ giải được về bài toán đó, sau đó chúng tôi yêu cầu họ đọc lại đề toán và những gì họ đã viết, rồi khuyến khích họ viết thêm một chút nữa. Cứ như vậy, và cả lớp bỗng thấy bài toán đã giải xong sau khi họ viết ra dòng sau cùng, giống như xem một màn ảo thuật. Thật ra đa số các bài toán trong chương trình học đều có thể giải như vậy mà không cần có một khái niệm toàn cục về lời giải khi bắt đầu giải chúng. Đây là tác phong làm toán cần được rèn luyện để chuẩn bị cho việc đương đầu với các bài toán phức tạp trong nghiên cứu khoa học về sau này. Vấn đề làm sao viết thêm một chút từ những gì có sẵn sẽ được trình bày trong các mục sau. + Lướt qua các bài toán cơ bản và dành nhiều thì giờ cho các bái toán đố. Nhiều sinh viên coi thường các bài toán cơ bản đơn giản mà không dành thì giờ ôn tập chúng, chỉ cố giải và học thuộc các bài toán khó. Thực ra đa số các bài toán phức tạp là các bài phối hợp nhiều bài toán cơ bản. Cho nên sẽ chúng ta thấy rõ bản chất của các bài toán loại này và dễ dàng giải chúng nếu chúng ta đã thành thạo các bài
 












Các ý kiến mới nhất